A role for GEA1 and GEA2 in the organization of the actin cytoskeleton in Saccharomyces cerevisiae.

نویسندگان

  • Ewa Zakrzewska
  • Marjorie Perron
  • André Laroche
  • Dominick Pallotta
چکیده

Profilin is an actin monomer-binding protein implicated in the polymerization of actin filaments. In the budding yeast Saccharomyces cerevisiae, the pfy1-111 rho2delta double mutant has severe growth and actin cytoskeletal defects. The GEA1 and GEA2 genes, which code for paralog guanosine exchange factors for Arf proteins, were identified as multicopy suppressors of the mutant phenotype. These two genes restored the polarized distribution of actin cortical patches and produced visible actin cables in both the pfy1-111 rho2delta and pfy1delta cells. Thus, overexpression of GEA1 or GEA2 bypassed the requirement for profilin in actin cable formation. In addition, gea1 gea2 double mutants showed defects in budding and in actin cytoskeleton organization, while overexpression of GEA1 or GEA2 led to the formation of supernumerary actin cable-like structures in a Bni1p/Bnr1p-dependent manner. The ADP-ribosylation factor Arf3p may be a target of Gea1p/Gea2p, since overexpression of ARF3 partially suppressed the profilin-deficient phenotype and a deletion of ARF3 exacerbated the phenotype of a pfy1-111 mutant. Gea1p, Gea2p, Arf1p, and Arf2p but not Arf3p are known to function in vesicular transport between the endoplasmic reticulum and the Golgi. In this work, we demonstrate a role for Gea1p, Gea2p, and Arf3p in the organization of the actin cytoskeleton.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Saccharomyces cerevisiae Arf3 protein is involved in actin cable and cortical patch formation.

We show that Arf3p, a member of the ADP ribosylation family, is involved in the organization of actin cables and cortical patches in Saccharomyces cerevisiae. Profilin-deficient cells (pfy1Delta) have severe growth defects and lack actin cables. Overexpression of ARF3 restores actin cables and corrects growth defects in these cells. Cells deficient for the cortical patch proteins Las17p and Vrp...

متن کامل

Regulation of Arf activation occurs via distinct mechanisms at early and late Golgi compartments

At the Golgi complex, the biosynthetic sorting center of the cell, the Arf GTPases are responsible for coordinating vesicle formation. The Arf-GEFs activate Arf GTPases and are therefore the key molecular decision-makers for trafficking from the Golgi. In Saccharomyces cerevisiae, three conserved Arf-GEFs function at the Golgi: Sec7, Gea1, and Gea2. Our group has described the regulation of Sec...

متن کامل

I-6: Role of Actin Cytoskeleton during Mouse Sperm Acrosomal Exocytosis

Background: Mammalian sperm must undergo a process termed capacitation to become competent to fertilize an egg. Capacitation renders the sperm competent by priming the cells to undergo a rapid exocytotic event called acrosomal exocytosis that is stimulated by the zona pellucida (ZP) of the egg or progesterone. Over the years, several biochemical events have been associated with the capacitation...

متن کامل

MSS4, a phosphatidylinositol-4-phosphate 5-kinase required for organization of the actin cytoskeleton in Saccharomyces cerevisiae.

The Saccharomyces cerevisiae protein MSS4 is essential and homologous to mammalian phosphatidylinositol-4-phosphate (PI(4)P) 5-kinases. Here, we demonstrate that MSS4 is a lipid kinase. MSS4 has dual substrate specificity in vitro, converting PI(4)P to PI(4, 5)P2 and to a lesser extent PI(3)P to PI(3,4)P2; no activity was detected with PI or PI(5)P as a substrate. Cells overexpressing MSS4 cont...

متن کامل

Characterization of Yeast Protein Enzymatic Hydrolysis and Autolysis in Saccharomyces cerevisiae and Kluyveromyces marxianus

Protein recovery under sonication treatment and autolysis, also protein hydrolysis progress during enzymatic hydrolysis (using trypsin and chymotrypsin) and autolysis (using endogenous enzymes) were investigated in Saccharomyces cerevisiae and Kluyveromyces marxianus. Crude protein content of dried yeast cells were 53.22% and 45.6% for S.cerevisiae and K.marxianus, respectively. After 96 hrs of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 165 3  شماره 

صفحات  -

تاریخ انتشار 2003